Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds Part 2. Free radicals C_nH (n = 2-12) and C_nN (n = 2-11)

Olga V. Dorofeeva and Lev V. Gurvich

Institute for High Temperatures, Academy of Sciences of the U.S.S.R., Izhorskaya ul. 13/19, Moscow 127412 (USSR)

(Received 28 June 1991)

Abstract

Reported values of rotational constants, vibrational fundamentals, excited electronic state energies, enthalpies of formation for $C_nH(n=2-12)$ and $C_nN(n=2-11)$ radicals are reviewed and the recommended values selected. Molecular constants and enthalpies of formation for most of the radicals, which are known as the components of the interstellar gas or that are candidates for discovery in interstellar space, are estimated because the experimental data are not available. The similarity transference procedure is developed for the calculation of bond distances and force constants. Based on the selected values of molecular constants, the ideal gas thermodynamic functions for 21 radicals are calculated by the standard statistical methanical method using rigid-rotor and harmonic-oscillator approximations. The calculated values of heat capacities C_p° , Gibbs energies $-(G^{\circ} - H_0^{\circ})/T$, and enthalpies $H^{\circ} - H_0^{\circ}$, are fitted to the polynomial functions. The constants of these polynomials allow the values of C_p° , $-(G^{\circ} - H_0^{\circ})/T$ and $H^{\circ} - H_0^{\circ}$ for considered radicals between 298.15 and 2000 K to be calculated. These constants together with the values of enthalpy of formation $\Delta_f H^{\circ}$ (298.15 K), predicted using the estimates of bond dissociation energies are presented in this paper.

INTRODUCTION

In the past 20 years spectral lines of many molecular species have been identified in radio observations of interstellar gas clouds. There is particular interest in the well-studied linear chain cyanopolyacetylenes, $H(C=C)_nC=N$, and their fragments, C_nH and C_nN radicals. (Part 1 of this series [1] was concerned with cyanopolyacetylenes, polyacetylenes and dicyanopolyacetylenes.) Free radicals C_2N , C_3N and C_nH with n up to 6 have been identified in the envelope of the carbon stars and have been detected in the laboratory [2–11]. The existence of these radicals in space suggests a possibility that the longer chain radicals, such as C_7H , C_8H and so on, could also be detected in certain astrophysical sources [10,12–15].

As is well known, for many of the molecular species the astronomical identifications were based on theoretical predictions of spectroscopic constants [5,7,12,16–18]. The experimental and theoretical studies of rotational, vibrational and electronic spectra of carbon chain molecules are therefore of considerable interest to both chemists and astrophysicists. Due to the lack of experimental data several attempts have been made to predict spectroscopic and thermochemical constants for carbon chain radicals [13,17,19-25].

This report involves the estimation of structural parameters, vibrational frequencies, excited electronic states and enthalpies of formation for 21 C_nH and C_nN radicals with maximum number of heavy atoms being equal to 12. (Spectroscopic and thermodynamic properties of CH and CN radicals are well known (see, for example, ref. 26) and these radicals are not considered in the present work.) For C₂N only, all molecular constants have been taken from reported experimental data. For the rest of the radicals molecular constants have been estimated partially or completely. The similarity transference procedure has been developed for the calculation of bond distances and force constants. The details of the selection or estimation of molecular constants and enthalpies of formation as well as the calculation of thermodynamic functions are presented below.

MOMENTS OF INERTIA AND GEOMETRIES

The radicals C_nH and C_nN have a linear unsymmetrical structure (symmetry group C_{av}). The rotational constants, B_0 , of radicals $C_n H$ with n up to 6, C₂N and C₃N (C₂H [2, 27-29], C₃H [4], C₄H [5,6,30,31], C₅H [5,8], C₆H [9,10,14,18,32], C₂N [11,33], C₃N [5,6,34,35]) have been determined by microwave spectroscopy and in the case of C_2N from the rotational analysis of the electronic spectra. The moments of inertia for these radicals (Table 1) were calculated using the more precise rotational constants [2,4,6,8,10,11].

To calculate the moments of inertia for other radicals, whose rotational constants were not determined, a knowledge of structural parameters is

Assumed bond lengths (Å) and computed moments of inertia for C_nH and C_nN radicals ^a						
Molecule	H-C	C≡C	C–C	C≡N	$I \times 10^{39} ({\rm g \ cm}^2)$	
C ₂ H	1.06	1.216			1.9215	
$\overline{C_3H}, \overline{C_5H}, \overline{C_7H}, \overline{C_9H}, \overline{C_{11}H}$	1.06	1.21	1.36		7.502, 35.038, 96, 204, 372	
C ₄ H, C ₆ H, C ₈ H, C ₁₀ H, C ₁₂ H	1.06	1.215	1.36		<i>17.636, 60.324,</i> 143, 280, 483	
C_2N			1.399	1.16	7.0297	
$\tilde{C_{3}N}, C_{5}N, C_{7}N, C_{9}N, C_{11}N$	*	1.215	1.37	1.16	16.962, 60, 145, 283, 490	
$C_4N, C_6N, C_8N, C_{10}N$		1.21	1.37	1.16	35, 97, 207, 377	

^a Values of moments of inertia calculated using the experimental rotational constants are given in italics.

TABLE 1

necessary. Molecular geometries of C_nH and C_nN radicals have not been determined experimentally and only the theoretical calculations have been carried out [7,13,17,18,21,23-25,36-43]. The bond lengths predicted from theoretical calculations reproduce reasonably well the experimental rotational constants where they are known. However, we obtained a somewhat better fit with bond lengths given in Table 1. The length of the C=C bond in C_2H (Table 1) was estimated using the experimental value for rotational constant of C₂H and assuming the length of the C-H bond to be equal to that in the C_2H_2 molecule [44]. In the same way the C-C bond length in C_2N was estimated from the rotational constant of C_2N and the C=N bond length in HC₃N [45]. The sets of structural parameters for C_nH and C_nN radicals with an even and odd number of non-hydrogen atoms (Table 1) have been transferred from parent molecules [1] and these parameters have been used in this work to calculate the moments of inertia of $C_n H$ (n = 7-12) and $C_n N (n = 4-11)$ radicals. The rotational constants for $C_3 H$, C₄H, C₅H, C₆H and C₃N calculated from assumed structural parameters are within 0.1–0.4% of the experimental B_0 values. We believe that the assumed bond lengths predict B_0 values for unknown radicals with an error of less than 3%.

VIBRATIONAL FREQUENCIES

C_2H

The vibrational spectrum of the C₂H radical has been studied experimentally [46–56] and theoretically [23,43,57,58] but there is still controversy about its assignment, especially about the C–H stretch and the C≡C–H bending frequencies. From the first spectroscopic study an absorption at 1848 cm⁻¹ was assigned to the C≡C stretching fundamental of C₂H isolated in an argon matrix [46]. The values of ν_3 (C≡C) obtained from theoretical calculations (1970–2100 cm⁻¹) [43,57,58] differ markedly from the spectroscopic value and they are close to ν (C≡C) in C₂H₂. However, recent spectroscopic studies [53–55] and ab initio calculation [23] have given evidence that the first spectroscopic assignment of ν_3 is correct. The ν_3 value of C₂H given in Table 2 was obtained from the gas-phase infrared spectrum [55].

In a matrix isolation study Jacox [47] has assigned an absorption at 3612 cm⁻¹ to the C-H stretching vibration. This value is significantly higher than the ν (C-H) in C₂H₂ (3374, 3282 cm⁻¹) [59] and the ν_1 (C-H) values of C₂H predicted by ab initio calculations (3375–3500 cm⁻¹) [23,43,57]. The determination of ν_1 is very uncertain because of the presence of the $\tilde{A}^2\Pi - \tilde{X}^2\Sigma^+$ band system in that region [48,49,60–62]. Yan et al. [52] have studied gas-phase electronic transitions of C₂H and have concluded that the symmetry of the 3600 cm⁻¹ band ($^{2}\Pi \leftarrow ^{2}\Sigma^{+}$) clearly indicates that this

TABLE 2

Molecule	Frequencies
C ₂ H	3500, 371.6(2), 1841
C₄H	3400, 1834, 1050, 625(2), 300(2)
C₄H	3333, 2218, 2060, 885, 627(2), 505(2), 233(2)
C ₅ H	3323, 2230, 2078, 1273, 729, 625(2), 540(2), 350(2), 148(2)
C ₆ H	3321, 2214, 2120, 2044, 1131, 619, 624(2), 515(2), 408(2), 274(2), 109(2)
C ₇ H	3321, 2223, 2154, 2055, 1317, 1004, 535, 625(2), 527(2), 457(2), 336(2), 201(2), 80(2)
C ₈ H	3321, 2228, 2176, 2095, 2046, 1227, 898, 471, 624(2), 531(2), 478(2), 384(2), 290(2), 160(2), 62(2)
C₀H	3321, 2232, 2191, 2125, 2052, 1336, 1133, 810, 420, 625(2), 537(2), 497(2), 430(2), 333(2), 229(2), 128(2), 49(2)
C ₁₀ H	3321, 2235, 2202, 2147, 2082, 2048, 1275, 1046, 736, 380, 624(2), 538(2), 506(2), 451(2), 371(2), 300(2), 194(2), 106(2), 40(2)
C ₁₁ H	3321, 2237, 2210, 2165, 2106, 2050, 1346, 1204, 968, 675, 346, 625(2), 541(2), 516(2), 473(2), 412(2), 331(2), 246(2), 162(2), 88(2), 33(2)
C ₁₂ H	3321, 2238, 2216, 2178, 2127, 2075, 2048, 1301, 1134, 900, 622, 318, 624(2), 541(2), 520(2), 484(2), 432(2), 361(2), 306(2), 216(2), 140(2), 75(2), 28(2)
$C_{2}N$	1916, 324(2), 1061
C ₃ N	2332, 2252, 929, 496(2), 242(2)
C₄N	2324, 2256, 1312, 772, 490(2), 333(2), 151(2)
$C_{5}N$	2330, 2316, 2255, 1176, 658, 488(2), 354(2), 267(2), 109(2)
C ₆ N	2330, 2310, 2255, 1356, 1052, 572, 488(2), 366(2), 315(2), 195(2), 80(2)
$C_7 N$	2329, 2325, 2307, 2255, 1272, 948, 505, 488(2), 361(2), 338(2), 278(2), 157(2), 62(2)
C ₈ N	2330, 2322, 2304, 2255, 1374, 1183, 859, 452, 488(2), 366(2), 352(2), 310(2), 218(2), 126(2), 49(2)
C ₉ N	2329, 2327, 2318, 2302, 2255, 1318, 1099, 785, 409, 488(2), 363(2), 352(2), 329(2), 284(2), 187(2), 105(2), 40(2)
C ₁₀ N	2329, 2326, 2315, 2300, 2255, 1383, 1253, 1022, 722, 374, 488(2), 368(2), 353(2), 348(2), 306(2), 231(2), 158(2), 87(2), 33(2)
C ₁₁ N	2329, 2326, 2324, 2312, 2299, 2255, 1344, 1186, 954, 667, 343, 488(2), 364(2), 354(2), 350(2), 322(2), 287(2), 206(2), 137(2), 75(2), 28(2)

Vibrational frequencies (cm^{-1}) for the reference radicals ^a

^a Experimental vibrational frequencies are given in italics; numbers in parentheses represent the degeneracies of frequencies.

transition is not a C-H stretch. Subsequently Jacox and Olson [54] reexamined the assignment of the 3600 cm⁻¹ absorption. However, they found problems with alternative assignments to $\nu_1 + \nu_2$ or $\nu_1 + 2\nu_2$, and concluded that the assignment to ν_1 is still the best possibility. A recent matrix IR study [53] has also revealed no satisfactory alternative for ν_1 . Since the assignments of ν_1 seem to be questionable, the value of $\nu_1 = 3500$ cm⁻¹ obtained from ab initio calculation [23], the accuracy of which is substantially improved compared to the previous studies, has been adopted in the present work (Table 2). Its uncertainty is estimated to be 100 cm⁻¹. The bending fundamental ν_2 of C₂H has not yet been directly observed. Experimental values ranging from 248 to 550 cm⁻¹ have been proposed from analysis of the observed spectroscopic data [48–51, 53–56]. Ab initio [23,43,57] and semiempirical [58] calculations predict values of bending vibration from 298 to 542 cm⁻¹. The value of ν_2 presented in Table 2 was determined by simultaneous analysis of all the bands observed in the IR diode laser spectroscopic study [56].

C_3H

Jacox and Milligan [63,64] studied the photolysis of allene and methylacetylene in an argon matrix and assigned an absorption at 1834 cm⁻¹ to C=C stretching of C₃H. This value is adopted here for ν_2 (Table 2).* Other fundamentals were estimated by comparison with frequencies of C₂H, C₂H₂, C₄H₂. Spangenberg et al. [65] have estimated the vibrational frequencies of C₃H using the frequencies of HCN and C₃ molecules. Their values differ substantially from those given in Table 2.

$C_4 H_1$

Dismuke et al. [66] have reported an IR spectroscopic study of the C_4H radical isolated in argon matrix. The bands at 2060 and 735 cm⁻¹ have been assigned to the stretching $\nu_3(C\equiv C)$ and the bending $\nu_5(HCC)$ modes, respectively.* From the rotational analysis of microwave spectrum [67], the value of bending frequency $\nu_7(C\equiv C-C)$ was roughly estimated to be 131 cm⁻¹. In the present work the vibrational frequencies of C_4H (Table 2) were calculated using a simplified valence force field for C_4H_2 (Table 3, see also ref. 1). Spangenberg et al. [65] have estimated the vibrational frequencies of C_4H based on the frequencies of C_4H_2 , C_3 and HCN molecules. Several frequencies of Spangenberg et al. [65] differ markedly

^{*} As our calculations were being completed, three papers concerning the vibrational frequencies of C₃H and C₄H radicals appeared [88–90]. The high resolution Fourier transform IR isotopic studies of matrix isolated C₃H [88] and C₄H [89] have enabled confirmation of the earlier identification of the C=C stretching mode (ν_2 (C=C) = 1824.8 cm⁻¹ for C₃H and ν_3 (C=C) = 2060.6 cm⁻¹ for C₄H) and identification of two new vibrational modes, ν_1 (C-H) = 3238.0 cm⁻¹, ν_3 (C-C) = 1159.7 cm⁻¹ for C₃H and ν_1 (C-H) = 3307.4 cm⁻¹, ν_2 (C=C) = 2083.9 cm⁻¹ for C₄H. Although these values are different from those estimated in this work (Table 2), the use of experimental values for stretching modes will not result in a marked difference in the calculated thermodynamic functions. The accurate experimental values of low-frequency bending modes are more important because of their larger contributions to the thermodynamic functions.

The vibrational frequencies of C_4H radical have recently been calculated in the semiempirical and ab initio approximation [90]. The values of bending modes calculated by the ab initio method are close to those in Table 2.

	Force constan	nts ^a		
	$\overline{C_4H_2}$	C ₆ H ₂	C_4N_2	
С-Н	5.946	6.137		
C≡N			18.446	
C≡C	15.403	15.026	19.142	
C–C	6.640	6.596	6.937	
C≡C−H	0.203	0.205		
C−C≡N			0.370	
C≡C−C	0.326	0.303	0.241	
C–H, C≡C	0.032	1.203		
C≡N, C−C			1.107	
C≡C, C−C	0.734	0.946	1.865	
C≡C−H, C≡C−C	0.061	0.064		
C−C≡N, C≡C−C			0.019	
C≡C−C, C≡C−C	0	0.042	0.077	

Valence force fields for C_4H_2 , C_6H_2 and C_4N_2 molecules which were used for calculation of vibrational frequencies of C_nH and C_nN radicals

^a Units are mdyn $Å^{-1}$ for stretching constants and stretching-stretching interaction constants; mdyn Å for bending constants and bending-bending interaction constants.

from those presented in Table 2. The unreasonably large value of $\nu_5 = 2089$ cm⁻¹ seems to be erroneous.

 $C_{n}H$ (n = 5–12)

No experimental or theoretical data on vibrational frequencies of C_nH radicals with $n \ge 5$ are available. The vibrational frequencies of these radicals (Table 2) were calculated using the force constants of C_6H_2 (Table 3).

 $C_2 N$

The vibrational frequencies of C_2N radical were determined from an analysis of observed electronic spectra [33,68–71]. The fundamental frequencies used in this work (Table 2) were taken from the high-resolution Fourier transform spectroscopic study [71]. The Renenr-Teller splitting of the vibrational level $\nu_2 = 1$ has been ignored.

 $C_{\rm n}N$ (n = 3–11)

No experimental or theoretical data on vibrational frequencies of $C_n N$ radicals with $n \ge 3$ are known. From the rotational analysis of microwave spectrum of $C_3 N$ [72], the value of the lowest bending frequency ν_5 was

TABLE 3

roughly estimated to be 179 cm⁻¹. The vibrational frequencies of these radicals (Table 2) were calculated using the force constants transferred from C_4N_2 molecule (Table 3, see also ref. 1).

ELECTRONIC STATES

$C_2H, C_4H, C_6H, C_8H, C_{10}H, C_{12}H$

ESR data [73] showed that C_2H possesses a ${}^{2}\Sigma^{+}$ ground electronic state. Ab initio calculations [28,43,60,61] predict that the lowest excited electronic state $\tilde{A}^{2}\Pi$, lies 2000-4000 cm⁻¹ above the $\tilde{X}^{2}\Sigma^{+}$ ground state, with the next lowest states lying at about 58000 cm⁻¹. Curl and co-workers [48,49,52,62] have reported the observation and rotational analysis of the $\tilde{A}^{2}\Pi \leftarrow X^{2}\Sigma^{+}$ electronic transition using color center laser spectroscopy. A band at 3772 cm⁻¹ has been assigned [49] to a purely electronic transition. This value is adopted for the energy of the first excited electronic state of C_2H (Table 4).

Molecule	State	Energy (cm ⁻¹)	Molecule	State	Energy (cm ⁻¹)
C ₂ H	$ ilde{X}^2\Sigma^+$	0	C ₂ N	$ ilde{X}^2\Pi$	0
	$ ilde{A^2}\Pi$	3772		$ ilde{a}^4\Sigma^-$	10600
C ₃ H	$ ilde{X}^2\Pi$	0		$ ilde{A^2}\Delta$	21259
C ₄ H	$ ilde{X}^2\Sigma^+$	0		$ ilde{B}^2\Sigma^-$	22413
	$ ilde{A^2}\Pi$	1000		$ ilde{C}^2\Sigma^+$	26662
C ₅ H	$ ilde{X}^2\Pi$	0	C ₃ N	$ ilde{X}^2\Sigma^+$	0
C ₆ H	$ ilde{X}^2\Pi$	0		$ ilde{A^2}\Pi$	5000
	$ ilde{A^2}\Sigma^+$	1000	C ₄ N	$ ilde{X}^2\Pi$	0
C ₇ H	$ ilde{X}^2\Pi$	0	C ₅ N	$ ilde{X}^2\Sigma^+$	0
C ₈ H	$ ilde{X}^2\Pi$	0		$ ilde{A^2}\Pi$	2000
	$ ilde{A^2}\Sigma^+$	3000	C ₆ N	$ ilde{X}^2\Pi$	0
C ₉ H	$ ilde{X}^2\Pi$	0	C ₇ N	$ ilde{X}^2\Pi$	0
$C_{10}H$	$ ilde{X}^2\Pi$	0		$ar{A^2}\Sigma^+$	1000
	$ ilde{A^2}\Sigma^+$	5000	C_8N	$ ilde{X}^2\Pi$	0
C ₁₁ H	$ ilde{X}^2\Pi$	0	C ₉ N	$ ilde{X}^2\Pi$	0
$C_{12}H$	$ ilde{X}^2\Pi$. 0		$ ilde{A^2}\Sigma^+$	4000
	$ ilde{\mathcal{A}}^2\Sigma^+$	7000	C ₁₀ N	$ ilde{X}^2\Pi$	0
			C ₁₁ N	$ ilde{X}^2\Pi$	0
				$ ilde{A^2}\Sigma^+$	7000

TABLE 4

Electronic states for the reference radicals

Fig. 1. Estimation of the energy differences between ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states for the isoelectronic radicals $C_{2n}H$ and $C_{2n-1}N$ (n = 2-6). The dotted lines correspond to the $T_{0}({}^{2}\Pi) - T_{0}({}^{2}\Sigma^{+})$ values estimated in this work.

It was established from microwave studies [5,6,30,67] that, like C₂H, the C₄H radical also has a ${}^{2}\Sigma^{+}$ ground state. The surprisingly large spin-orbit interaction for the ν_{7} and $2\nu_{7}(\Delta)$ states suggests that C₄H radical has a low-lying electronically excited state $\tilde{A}^{2}\Pi$ [67]. In contrast to the preceding radicals with an even number of carbon atoms which have ${}^{2}\Sigma^{+}$ electronic ground states, C₆H has a ${}^{2}\Pi$ ground state [9,10,14,18,32]. According to ab initio calculations, the ${}^{2}\Pi$ state of C₆H lies approximately 550 cm⁻¹ [13] or 2000 cm⁻¹ [25] below the ${}^{2}\Sigma^{+}$ state. When the carbon chain grows, the possible number of chemical bond structures related to the ${}^{2}\Pi$ state increases, and the ${}^{2}\Pi$ state of the 'carbon-chain radicals longer than C₆H was presumed to be $\tilde{X}^{2}\Pi$ [13,18,25,32].

We have adopted a ${}^{2}\Sigma^{+}$ electronic ground state for C₂H and C₄H radicals and a ${}^{2}\Pi$ ground state for other C_{2n}H radicals. The energy of the excited electronic state $T_{0}(\tilde{A}^{2}\Sigma^{+})$, of C₆H is assumed to be 1000 cm⁻¹ (Table 4). This value was estimated by averaging the values of energy obtained in ab initio calculations [13,25]. The rough estimation of energies of excited electronic states for the rest of C_{2n}H radicals was carried out according to Fig. 1. It was assumed that the energy difference between the ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states decreases strongly from C₂H to C₄H and changes sign for higher members of the C_{2n}H family.

C_3H , C_5H , C_7H , C_9H , $C_{11}H$

According to the microwave data [3,4,7,8,74], the ground state of the C_3H and C_5H radicals is ${}^2\Pi$ and it is expected that C_nH radicals with

 $n \ge 5$ will also have the ${}^{2}\Pi$ ground state [32]. The $\tilde{X}^{2}\Pi$ ground state was adopted for all C_{2n+1}H radicals (Table 4).

The C₂N radical which is isoelectronic with the C₃H radical has no low-lying electronically excited states (see below). By analogy with C₂N, the excited electronic states of the C_{2n+1}H radicals are expected to lie much higher than the $\tilde{X}^2\Pi$ state and, for that reason, they have not been taken into account in this work.

 C_2N , C_4N , C_6N , C_8N , $C_{10}N$

Three excited states $\tilde{A}^2\Delta$, $\tilde{B}^2\Sigma^-$ and $\tilde{C}^2\Sigma^+$ were observed in the absorption spectrum of the C₂N radical [33]. The semiempirical calculation [75] conformed to what is known about the three observed excited states and pointed to the unobserved excited state being $\tilde{a}^4\Sigma^-$. According to these data, four excited electronic states of C₂N are given in Table 4.

By analogy with the C_2N radical, the ${}^2\Pi$ electronic ground state was assumed for all the $C_{2n}N$ radicals and it was suggested that there are no low-lying electronic excited states for these radicals.

 $C_3N, C_5N, C_7N, C_9N, C_{11}N$

Data obtained from the microwave studies [5,6,30,34,35] showed that the C_3N radical has the ${}^{2}\Sigma^{+}$ ground state. There are no experimental or theoretical data on the electronic states for the rest of the $C_{2n+1}N$ radicals. In this work the rough estimation of the ground and excited electronic states for the $C_{2n+1}N$ radicals was made by comparison with the isoelectronic $C_{2n}H$ radicals (see Fig. 1 and Table 4).

THERMODYNAMIC FUNCTIONS

Based on the recommended values of molecular constants, ideal gas thermodynamic functions for 21 linear carbon chain radicals between 298.15 and 2000 K were calculated by a standard statistical thermodynamic method using the rigid-rotor and harmonic-oscillator approximation. The calculated values of Gibbs energy $-(G^{\circ} - H_0^{\circ})/T$, heat capacity C_p° , and enthalpy $H^{\circ} - H_0^{\circ}$, were fitted to polynomial functions. The constants of these polynomials, given in Tables 5–7, were obtained by the least squares method. The fitting errors are less than 0.01% for $-(G^{\circ} - H_0^{\circ})/T$, $H^{\circ} - H_0^{\circ}$ and 0.1% for C_p° . The uncertainties in the calculated thermodynamic functions are presented in Table 8. The principal sources of error in the calculated thermodynamic functions at low temperatures arise from the uncertainties in the vibrational frequencies and excited electronic state energies estimated in this work. The uncertainties at high temperatures are 62

Constants of polynomial function for calculating the values of standard Gibbs energy $-[G^{\circ}(T) - H^{\circ}(0)]/T = g_0 + g_1 \ln x + g_2 x^{-2} + g_3 x^{-1} + g_4 x + g_5 x^2 + g_6 x^3 (J K^{-1} mol^{-1})$ for 298.15 K $\leq T \leq 2000$ K and $x = T \times 10^{-4}$

Mole- cule	g_0	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> ₄	<i>8</i> ₅	<i>8</i> ₆
$\overline{C_2H}$	310.505	39.9485	-0.000409371	0.213774	37.0134	172.936	- 335.795
$\tilde{C_{3}H}$	347.943	48.3316	-0.00298334	0.641513	213.779	-326.929	282.887
C ₄ H	431.230	76.9658	-0.00813049	1.62089	173.225	-244.936	203.896
C ₅ H	444.827	73.1344	-0.00521667	1.21567	359.677	- 546.547	461.953
C ₆ H	503.515	88.7454	-0.00636617	1.53595	423.350	- 655.941	561.959
C ₇ H	550.556	99.6246	-0.00673236	1.68452	509.626	- 795.849	685.550
C ₈ H	598.146	110.833	-0.00687983	1.82587	581.220	- 856.756	688.667
C ₉ H	653.864	125.535	-0.00841548	2.15468	662.659	- 1049.93	913.492
$C_{10}H$	707.665	138.940	-0.00900915	2.37110	711.554	-1084.30	916.813
C ₁₁ H	757.245	151.455	-0.0100946	2.62008	815.626	-1303.92	1141.37
C ₁₂ H	808.537	164.087	-0.0105662	2.81239	877.053	-1380.93	1199.30
C_2N	317.029	36.1882	-0.000662955	0.190999	185.889	- 338.549	330.688
C ₃ N	374.547	53.2842	-0.00233909	0.613306	151.591	-115.637	28.5192
C_4N	423.309	62.9426	-0.00260996	0.744571	302.801	- 486.689	425.079
C ₅ N	419.830	59.1023	-0.000296021	0.420104	597.229	-1085.67	1017.86
C ₆ N	537.546	90.8146	-0.00366073	1.15834	430.641	-680.675	585.308
C_7N	601.837	107.581	-0.00473278	1.46725	472.617	-734.682	621.741
C ₈ N	651.565	118.572	-0.00466405	1.55530	559.489	-876.809	747.868
C_9N	712.634	133.488	-0.00496019	1.74757	583.020	-834.672	651.045
$C_{10}N$	765.444	146.296	-0.00566444	1.94716	688.722	-1073.80	911.339
$C_{11}N$	824.147	160.581	-0.00591027	2.12568	726.117	-1092.22	903.041

due to uncertainties in the molecular constants and the effect of vibrational anharmonicity.

The calculations of thermodynamic functions are known in the literature for C₂H [20,26 and references cited therein,76], C_nH (n = 3-10) [20], C₂N [26 and references cited therein]. The calculated values of $-(G^{\circ} - H_0^{\circ})/T$ and C_p^o for C₂H and C₂N agree with those reported previously within some 0.1 J K⁻¹ mol⁻¹. The discrepancies are due to more precise values of vibrational frequencies used in this work. Duff and Bauer [20] have computed thermodynamic functions of C_nH (n = 2-10) radicals from the molecular constants. Unfortunately, these authors have not reported the moments of inertia and vibrational frequencies which were adopted for the calculation of thermodynamic functions and have presented the polynomial forms for ($H^{\circ} - H_0^{\circ}$)/T and ($G^{\circ} - H_0^{\circ}$)/T only. The discrepancies with the $-(G^{\circ} - H_0^{\circ})/T$ values at 298.15 K calculated by Duff and Bauer [20] range from 1.5 to 50 J K⁻¹ mol⁻¹ for different radicals. TABLE 6

Constants of polynomial function for calculating the values of standard heat capacity $C_p^{\circ}(T) = c_0 + c_1 x^{-2} + c_2 x + c_3 x^2 + c_4 x^3$ (J K⁻¹ mol⁻¹) for 298.15 K $\leq T \leq 2000$ K and $x = T \times 10^{-4}$

Molecule	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄
C ₂ H	39.9485	-0.000818742	74.0268	1037.62	-4029.53
C ₃ H	48.3316	-0.00596667	427.559	-1961.58	3394.64
C_4H	76.9658	-0.0162610	346.450	- 1469.62	2446.75
C ₅ H	73.1344	-0.0104333	719.355	-3279.28	5543.44
C ₆ H	88.7454	-0.0127323	846.700	- 3935.65	6743.51
C ₇ H	99.6246	-0.0134647	1019.25	- 4775.09	8226.60
C ₈ H	110.833	-0.0137597	1162.44	- 5140.53	8264.00
C ₉ H	125.535	-0.016831	1325.32	- 6299.60	10961.9
C ₁₀ H	138.940	-0.0180183	1423.11	-6505.78	11001.8
C ₁₁ H	151.455	-0.0201892	1631.25	-7823.54	13696.5
$C_{12}H$	164.087	-0.0211325	1754.11	- 8285.57	14391.5
C_2N	36.1882	-0.00132591	371.779	-2031.29	3968.26
$\overline{C_3N}$	53.2842	-0.00467817	303.182	-693.820	342.230
C ₄ N	62.9426	-0.00521992	605.602	-2920.14	5100.95
C ₅ N	59.1023	-0.000592043	1194.46	-6514.01	12214.3
C ₆ N	90.8146	-0.00732146	861.282	-4084.05	7023.69
$\tilde{C_7N}$	107.581	-0.00946557	945.234	- 4408.09	7460.89
	118.572	-0.0093281	1118.98	- 5260.86	8974.42
C ₉ N	133.488	-0.00992038	1166.04	-5008.03	7812.54
$C_{10}N$	146.296	-0.0113289	1377.44	-6442.80	10936.1
$\tilde{C_{11}N}$	160.581	-0.0118205	1452.23	-6553.30	10836.5

ENTHALPIES OF FORMATION

$C_{n}H$

Several different values have been reported for the enthalpy of formation of the C₂H radical, showing considerable scatter [22, 26 and references cited therein, 77–80]. In the present work, the value of $\Delta_f H^{\circ}(C_2H)$ (Table 7) has been calculated using the C–H bond dissociation energies of acetylene determined recently from experimental measurements [50,81,82]. Among radicals reviewed in this paper, C₂H is the only radical whose enthalpy of formation is determined sufficiently reliably.

The enthalpy of formation of C_3H , $\Delta_f H^\circ$ (C_3H , g, 298.15 K) = 603 ± 50 kJ mol⁻¹, has been obtained from mass-spectrometric studies of reactions of C_3H^+ ions in the gas phase [83]. The enthalpies of formation of C_nH (n = 2-10) radicals were estimated by means of an empirical theory [19] and semiempirical calculations [22,78]. Taking into account the low accuracy of the experimental value of $\Delta_f H^\circ(C_3H)$ [83], we have estimated the enthalpy of formation of C_3H (Table 7) by averaging the available estimates [19,78,83]. Although this estimate is somewhat higher than the

TABLE 7

Constants of polynomial function for calculating the values of standard enthalpy $H^{\circ}(T) - H^{\circ}(0) = h_0 + h_1 x^{-1} + h_2 x + h_3 x^2 + h_4 x^3 + h_5 x^4$ (kJ mol⁻¹) for 298.15 K $\leq T \leq 2000$ K and $x = T \times 10^{-4}$ and also accepted values of $\Delta_f H^{\circ}(298.15 \text{ K})$ (kJ mol⁻¹)

Mole- cule	h ₀	<i>h</i> ₁	<i>h</i> ₂	h ₃	h ₄	<i>h</i> ₅	$\Delta_{\mathrm{f}}H^{0}$
C ₂ H	-2.13774	0.00818742	399.485	370.134	3458.72	-10073.8	569
C ₄ H	-6.41513	0.059666	483.316	2137.79	- 6538.59	8486.60	630
C₄H	-16.2089	0.162610	769.658	1732.25	-4898.72	6116.88	780
C₄H	- 12.1567	0.104333	731.344	3596.77	- 10930.9	13858.6	860
C ₆ H	-15.3595	0.127323	887.454	4233.50	- 13118.8	16858.8	1000
C ₇ H	-16.8452	0.134647	996.246	5096.26	- 15917.0	20566.5	1090
C ₈ H	- 18.2587	0.137597	1108.33	5812.20	-17135.1	20660.0	1230
C₀H	-21.5468	0.16831	1255.35	6626.59	- 20998.7	27404.8	1310
$C_{10}H$	-23.7110	0.180183	1389.40	7115.54	-21685.9	27504.4	1450
$C_{11}H$	-26.2008	0.201892	1514.55	8156.26	-26078.5	34241.2	1530
C_{12}^{H}	-28.1239	0.211325	1640.87	8770.53	-27618.6	35978.9	1670
$\tilde{C_2N}$	-1.90999	0.0132591	361.882	1858.89	- 6770.98	9920.65	560
$\bar{C_3N}$	-6.13306	0.0467817	532.842	1515.91	-2312.73	855.575	609
C₄N	-7.44571	0.0521992	629.426	3028.01	-9733.78	12752.4	790
C ₅ N	-4.20104	0.00592043	591.023	5972.29	-21713.4	30535.8	830
C ₆ N	-11.5834	0.0732146	908.146	4306.41	- 13613.5	17559.2	1010
$\tilde{C_7N}$	-14.6725	0.0946557	1075.81	4726.17	- 14693.6	18652.2	1060
C ₈ N	-15.5530	0.0932810	1185.72	5594.89	-17536.2	22436.0	1240
C ₉ N	-17.4757	0.0992038	1334.88	5830.20	- 16693.4	19531.4	1280
$C_{10}N$	-19.4716	0.113289	1462.96	6887.22	-21476.0	27340.2	. 1460
$C_{11}^{10}N$	-21.2568	0.118205	1605.81	7261.17	-21844.3	27091.2	1500

experimental value, it is within the experimental uncertainty. In addition, the $-C \equiv CH$ bond dissociation energy for this value of $\Delta_f H^{\circ}(C_3H)$ is practically the same ($\approx 780 \text{ kJ mol}^{-1}$) for two processes, $C_4H_2 \rightarrow C_3H +$ CH and $C_4H_2 \rightarrow 2CH + C_2$.

The enthalpies of formation of the free radicals are related to the corresponding bond strengths by the equation

$$D_0(\mathbf{R}-\mathbf{X}) = \Delta_f H^{\circ}(\mathbf{R}) + \Delta_f H^{\circ}(\mathbf{X}) - \Delta_f H^{\circ}(\mathbf{R}\mathbf{X})$$
(1)

Using the assumed values of $\Delta_f H^{\circ}(C_2H)$ and $\Delta_f H^{\circ}(C_3H)$ and eqn. (1) the enthalpies of formation of all other C_nH radicals were approximately estimated in the present work. For instance, from $\Delta_f H^{\circ}(C_2H)$, $\Delta_f H^{\circ}(CN)$ and $\Delta_f H^{\circ}(HC_3N)$ ($\Delta_f H^{\circ}(CN)$ and $\Delta_f H^{\circ}(HC_3N)$ values were taken from refs. 26 and 1, respectively), $D_0(HC_2-CN) \approx 620$ kJ mol⁻¹ can be obtained. Then, assuming $D_0(HC_2-CN) = D_0(HC_{2n} - CN)$ the enthalpies of formation of $C_{2n}H$ radicals were calculated (Table 7). Similarly, other reactions with C_2H radical may be used for calculation of $\Delta_f H^{\circ}(C_{2n}H)$. In the case of $C_{2n+1}H$ radicals, their enthalpies of formation were calculated assuming $D_0(HC=C_{3H}) = D_0(HC=C_{2n+1}H) \approx 780$ kJ mol⁻¹. The values of $\Delta_f H^{\circ}$ for

TABLE 8

Molecule	Uncertainti in $-(G^{\circ}-)$	es $H_0^\circ)/T$	Uncertainti in C_p°	es	Uncertainties in $\Delta_f H^{\circ}(298.15 \text{ K})$	
	298.15 K	2000 K	298.15 K	2000 K		
$\overline{C_2H}$	0.2	1.5	0.5	1.5	3	
C ₃ H	2.5	6.0	2.5	3.0	50	
C ₄ H	5.0	8.0	3.5	6.0	50	
C ₅ H	4.0	10.0	4.0	5.0	75	
C ₆ H	10.0	15.0	5.5	7.0	75	
C ₇ H	7.0	16.0	6.0	7.0	100	
C ₈ H	9.0	19.0	7.0	10.0	100	
C ₉ H	10.0	14.0	8.0	10.0	125	
C ₁₀ H	11.0	24.0	9.0	13.0	125	
C ₁₁ H	12.0	26.0	10.0	12.0	150	
$C_{12}H$	13.0	29.0	10.0	15.0	150	
$C_2 N$	1.5	4.0	1.5	2.5	50	
$\overline{C_3N}$	2.5	7.0	2.5	8.0	12	
C ₄ N	4.0	9.0	3.5	4.0	75	
C ₅ N	12.0	15.0	4.5	10.0	75	
C ₆ N	7.0	16.0	5.5	6.0	100	
$\tilde{C_7N}$	15.0	20.0	7.0	9.0	100	
C ₈ N	10.0	22.0	7.0	9.0	125	
C ₉ N	11.0	24.0	8.0	12.0	125	
C ₁₀ N	12.0	26.0	9.0	11.0	150	
$C_{11}^{11}N$	15.0	30.0	10.0	14.0	150	

The uncertainties of the calculated thermodynamic functions (J K^{-1} mol⁻¹) and adopted enthalpies of formation (kJ mol⁻¹)

 $HC_{2n+1}N$ and $C_{2n}H_2$ molecules needed in these calculations were taken from ref. 1. The calculated enthalpies of formation of C_nH radicals and the uncertainties in their values are given in Tables 7 and 8, respectively.

 $C_n N$

Dibeler et al. [84] have used electron impact mass spectroscopy to measure the enthalpies of formation of $C_n N$ radicals (n = 2-6). Their values of $\Delta_f H^\circ$ for $C_2 N$ and $C_3 N$ are 515 and 548 kJ mol⁻¹, respectively. From cross-section data for formation of parent and fragment ions by electron impact from $C_2 N_2$, the value of 644 kJ mol⁻¹ is obtained for $\Delta_f H^\circ(C_2 N)$ [85]. The enthalpy of formation of $C_3 N$ (629 ± 17 kJ mol⁻¹) was measured by the photodissociative excitation of $C_4 N_2$ [86].

The value of $\Delta_{\rm f} H^{\circ}(C_3N)$ given in Table 7 is based on the experimental data of Halpern et al. [86] and it was obtained using the more accurate values of enthalpies of formation of C_4N_2 [87] and CN [26]. Combining this value with the experimental $\Delta_{\rm f} H^{\circ}$ values of C_4N_2 [87] and CN [26] gives

 $D_0(\text{NC}-\text{C}_3\text{N}) \approx 520 \text{ kJ mol}^{-1}$ via eqn. (1). Assuming $D_0(\text{NC}-\text{C}_3\text{N}) = D_0(\text{NC}-\text{C}_{2n+1}\text{N})$ the enthalpies of formation of C_{2n+1}N radicals were calculated in this work (Table 7). The same results for $\Delta_f H^\circ(\text{C}_{2n+1}\text{N})$ can be obtained for other reactions with C₃N radical. Thus, for example, when $\Delta_f H^\circ(\text{C}_3\text{N})$ is combined with the values of $\Delta_f H^\circ$ for C₂H (Table 7) and HC₃N [1], $D_0(\text{HC}_2-\text{C}_3\text{N})$ is calculated to be about 570 kJ mol⁻¹. The enthalpies of formation of C_{2n+1}N radicals calculated assuming $D_0(\text{HC}_2-\text{C}_3\text{N}) = D_0(\text{HC}_2-\text{C}_{2n+1}\text{N})$ are almost the same as given in Table 7.

The experimental value of $\Delta_{f}H^{\circ}(C_{2}N) = 644 \text{ kJ mol}^{-1}[85]$ appears to be much too high. The value of $\Delta_{f}H^{\circ}(C_{2}N) = 560 \text{ kJ mol}^{-1}$ was adopted in the present work. For this value, $D_{0}(-C\equiv N)$ is almost the same (about 730 kJ mol}^{-1}) for two reactions $C_{2}N_{2} \rightarrow C_{2}N + N$ and $C_{2}N_{2} \rightarrow 2N + C_{2}$, and $D_{0}(-C\equiv CH)$ value of about 780 kJ mol}^{-1} for the dissociation HC=C_{2}N \rightarrow HC + C₂N is close to $D_{0}(-C\equiv CH)$ for the dissociation HC=C₃H \rightarrow HC + C₃H. We believe that it is reasonable to assume a similarity for these D_{0} values. The enthalpies of formation of $C_{2n}N$ radicals were calculated (Table 7) using the value of $D_{0}(HC\equiv C_{2n}N) \approx 780 \text{ kJ mol}^{-1}$ and eqn. (1). Although the uncertainties of the estimated $\Delta_{f}H^{\circ}$ values are rather large (Table 8), the proposed set of $\Delta_{f}H^{\circ}$ values for $C_{n}N$ and $C_{n}H$ radicals (Table 7) * and $C_{2n}H_{2}$, $C_{2n}N_{2}$ and HC_{2n+1}N molecules [1] is self-consistent.

ACKNOWLEDGMENT

The authors thank Prof. Yu.A. Lebedev for useful discussions.

REFERENCES

- 1 O.V. Dorofeeva and L.V. Gurvich, Thermochim. Acta, 178 (1991) 273.
- 2 C.A. Gottlieb, E.W. Gottlieb and P. Thaddeus, Astrophys. J., 264 (1983) 740.
- 3 P. Thaddeus, C.A. Gottlieb, A. Hjalmarson, L.E.B. Johansson, W.M. Irvine, P. Friberg and R.A. Linke, Astrophys. J., 294 (1985) L49.
- 4 C.A. Gottlieb, J.M. Vrtilek, E.W. Gottlieb and P. Thaddeus, Astrophys. J., 294 (1985) L55.
- 5 M. Guélin, P. Friberg and A. Mezaoni, Astron. Astrophys., 109 (1982) 23.
- 6 C.A. Gottlieb, E.W. Gottlieb, P. Thaddeus and H. Kawamura, Astrophys. J., 275 (1983) 916.

* As this work was being completed, the results of MNDO calculations of heats of formation of the C_nH and C_nN radicals (n = 1-9) were published [91]. For C_2H , C_3H , C_2N , C_3N and C_5N radicals, the differences between calculated [91] and our estimated values of $\Delta_f H^{\circ}$ (Table 7) exceed the uncertainties of the $\Delta_f H^{\circ}$ values given in Table 8. As our values of $\Delta_f H^{\circ}$ for C_2H , C_3H , C_2N and C_3N are based on experimental data, one can give preference to our estimates.

- 7 J. Cernicharo, C. Kahane, J. Gomez-Gonzalez and M. Guélin, Astron. Astrophys., 164 (1986) L1.
- 8 C.A. Gottlieb, E.W. Gottlieb and P. Thaddeus, Astron. Astrophys., 164 (1986) L5.
- 9 J. Cernicharo, M. Guélin, K.M. Menten and C.M. Walmsley, Astron. Astrophys., 181 (1987) L1.
- 10 J.C. Pearson, C.A. Gottlieb, D.R. Woodward and P. Thaddeus, Astron. Astrophys., 189 (1988) L13.
- 11 M. Kakimoto and T. Kasuya, J. Mol. Spectrosc., 94 (1982) 380.
- 12 M.B. Bell, P.A. Feldman, S. Kwok and H.E. Mattews, Nature, 295 (1982) 389.
- 13 A. Murakami, K. Kawaguchi and S. Saito, Publ. Astron. Soc. Jpn., 39 (1987) 189.
- 14 S. Saito, K. Kawaguchi, H. Suzuki, M. Ohishi, N. Kaifu and S. Ishikawa, Publ. Astron. Soc. Jpn., 39 (1987) 193.
- 15 E. Herbst and C.M. Leung, Astrophys. J., Suppl. Ser., 69 (1989) 271.
- 16 N.W. Broten, T. Oka, L.W. Avery, J.M. MacLeod and H.W. Kroto, Astrophys. J., 223 (1978) L105.
- 17 S. Green, Astrophys. J., 240 (1980) 962.
- 18 M. Guélin, J. Cernicharo, C. Kahane, J. Gomez-Gonzalez and C.M. Walmsley, Astron. Astrophys., 175 (1987) L5.
- 19 M. Cowperthwaite and S.H. Bauer, J. Chem. Phys., 36 (1962) 1743.
- 20 R.E. Duff and S.H. Bauer, J. Chem. Phys., 36 (1962) 1754.
- 21 S. Wilson and S. Green, Astrophys. J., 212 (1977) L87.
- 22 W. Kühnel, E. Gey and H.-J. Spangenberg, Z. Phys. Chem., 263 (1982) 641.
- 23 W.P. Kraemer, B.O. Roos, P.R. Bunker and P. Jensen, J. Mol. Spectrosc., 120 (1986) 236.
- 24 D.L. Cooper and S.C. Murphy, Astrophys. J., 333 (1988) 482.
- 25 F. Pauzat and Y. Ellinger, Astron. Astrophys., 216 (1989) 305.
- 26 L.V. Gurvich, I.V. Veyts and C.B. Alcock (Eds.), Thermodynamic Properties of Individual Substances, 4th edn., Vol. 2, Hemisphere, New York, 1990.
- 27 K.V.L.N. Sastry, P. Helminger, A. Charo, E. Herbst and F.C. De Lucia, Astrophys. J., 251 (1981) L119.
- 28 L.M. Ziurys, R.J. Saykally, R.J. Plambeck and N.R. Erickson, Astrophys. J., 254 (1982) 94.
- 29 R.J. Saykally, L. Veseth and K.M. Evenson, J. Chem. Phys., 80 (1984) 2247.
- 30 M. Guélin, S. Green and P. Thaddeus, Astrophys. J., 224 (1978) L27.
- 31 M.B. Bell, T.J. Sears and H.E. Matthews, Astrophys. J., 255 (1982) L75.
- 32 H. Suzuki, M. Ohishi, N. Kaifu, S. Ishikawa, T. Kasuga, S. Saito and K. Kawaguchi, Publ. Astron. Soc. Jpn., 38 (1986) 911.
- 33 A.J. Merer and D.N. Travis, Can. J. Phys., 43 (1965) 1795.
- 34 M. Guélin and P. Thaddeus, Astrophys. J., 212 (1977) L81.
- 35 P. Friberg, A. Hjalmarson, W.M. Irvine and M. Guélin, Astrophys. J., 241 (1980) L99.
- 36 M.S. Gordon and J.A. Pople, J. Chem. Phys., 49 (1968) 4643.
- 37 W.A. Lathan, W.J. Hehre and J.A. Pople, J. Am. Chem. Soc., 93 (1971) 808.
- 38 S.P. So and W.G. Richards, J. Chem. Soc., Faraday Trans. 2, 71 (1975) 660.
- 39 I.H. Hillier, J. Kendrick and M.F. Guest, Mol. Phys., 30 (1975) 1133.
- 40 P. Bischof, J. Am. Chem. Soc., 98 (1976) 6844.
- 41 J. Pacansky and G. Orr, J. Chem. Phys., 67 (1977) 5952.
- 42 P. Bischof and G. Friedrich, J. Comput. Chem., 3 (1982) 486.
- 43 G. Fogarasi, J.E. Boggs and P. Pulay, Mol. Phys., 50 (1983) 139.
- 44 W.J. Lafferty and R.J. Thibault, J. Mol. Spectrosc., 14 (1964) 79.
- 45 J.K. Tyler and J. Sheridan, Trans. Faraday Soc., 59 (1963) 2661.
- 46 D.E. Milligan, M.E. Jacox and L. Abouaf-Marguin, J. Chem. Phys., 46 (1967) 4562.
- 47 M.E. Jacox, Chem. Phys., 7 (1975) 424.
- 48 P.G. Carrick, A.J. Merer and R.F. Curl, Jr., J. Chem. Phys., 78 (1983) 3652.

- 49 R.F. Curl, P.G. Carrick and A.J. Merer, J. Chem. Phys., 82 (1985) 3479.
- 50 A.M. Wodtke and Y.T. Lee, J. Phys. Chem., 89 (1985) 4744.
- 51 R.F. Curl, P.G. Carrick and A.J. Merer, J. Chem. Phys., 83 (1985) 4278.
- 52 W.-B. Yan, C.B. Dane, D. Zeitz, J.L. Hall and R.F. Curl, J. Mol. Spectrosc., 123 (1987) 486.
- 53 R.A. Shepherd and W.R.M. Graham, J. Chem. Phys., 86 (1987) 2600.
- 54 M.E. Jacox and W.B. Olson, J. Chem. Phys., 86 (1987) 3134.
- 55 H. Kanamori, K. Seki and E. Hirota, J. Chem. Phys., 87 (1987) 73.
- 56 H. Kanamori and E. Hirota, J. Chem. Phys., 89 (1988) 3962.
- 57 K.A. White and G.C. Schatz, J. Phys. Chem., 88 (1984) 2049.
- 58 J.R. Reimers, K.R. Wilson, E.J. Heller and S.R. Langhoff, J. Chem. Phys., 82 (1985) 5064.
- 59 I. Suzuki and J. Overend, Spectrochim. Acta, Part A, 25 (1969) 977.
- 60 S. Shih, S.D. Peyerimhoff and J. Buenker, J. Mol. Spectrosc., 64 (1977) 167.
- 61 S. Shih, S.D. Peyerimhoff and J. Buenker, J. Mol. Spectrosc., 74 (1979) 124.
- 62 P.G. Carrick, J. Pfeiffer, R.F. Curl, Jr., E. Koester, F.K. Tittel and J.V.V. Kasper, J. Chem. Phys., 76 (1982) 3336.
- 63 M.E. Jacox and D.E. Milligan, Chem. Phys., 4 (1974) 45.
- 64 M.E. Jacox, J. Phys. Chem. Ref. Data, 13 (1984) 945.
- 65 H.-J. Spangenberg, I. Börger and W. Schirmer, Z. Phys. Chem., 255 (1974) 1.
- 66 K.I. Dismuke, W.R.M. Graham and W. Weltner, Jr., J. Mol. Spectrosc., 57 (1975) 127.
- 67 S. Yamamoto, S. Saito, M. Guélin, J. Cernicharo, H. Suzuki and M. Ohishi, Astrophys. J., 323 (1987) L149.
- 68 V.E. Bondybey and J.H. English, J. Mol. Spectrosc., 70 (1978) 236.
- 69 K. Hakuta and H. Uehara, J. Chem. Phys., 78 (1983) 6484.
- 70 K. Kawaguchi, T. Suzuki, S. Saito, E. Hirota and T. Kasuya, J. Mol. Spectrosc., 106 (1984) 320.
- 71 C.R. Brazier, L.C. O'Brien and P.F. Bernath, J. Chem. Phys., 86 (1987) 3078.
- 72 H. Mikami, S. Yamamoto, S. Saito and M. Guélin, Astron. Astrophys., 217 (1989) L5.
- 73 W.R.M. Graham, K.I. Dismuke and W. Welther, Jr., J. Chem. Phys., 60 (1974) 3817.
- 74 J. Cernicharo, C. Kahane, J. Gomes-Gonzalez and M. Guélin, Astron. Astrophys., 167 (1986) L5.
- 75 P. Carsky, J. Kuhn and R. Zahradnik, J. Mol. Spectrosc., 55 (1975) 120.
- 76 H.-J. Spangenberg, I. Börger, H. Hoffman and G. Mögel, Z. Phys. Chem., 259 (1978) 531.
- 77 H. Okabe and V.H. Dibeler, J. Chem. Phys., 59 (1973) 2430.
- 78 W. Kühnel, T. Steger, E. Gey and H.J. Spangenberg, Z. Phys. Chem., 259 (1978) 363.
- 79 K. Vasudevan and F. Grein, J. Chem. Phys., 68 (1978) 1418.
- 80 Yu.P. Yampolskii and V.V. Zelentsov, React. Kinet. Catal. Lett., 17 (1981) 347.
- 81 H. Shiromaru, Y. Achiba, K. Kimura and Y.T. Lee, J. Phys. Chem., 91 (1987) 17.
- 82 Y. Chen, D.M. Jonas, C.E. Hamilton, P.G. Green, J.L. Kinsey and R.W. Field, Ber. Bunsenges. Phys. Chem., 92 (1988) 329.
- 83 A.B. Raksit and D.K. Bohme, Int. J. Mass Spectrom. Ion Processes, 55 (1983) 69.
- 84 V.H. Dibeler, R.M. Reese and J.L. Franklin, J. Am. Chem. Soc., 83 (1961) 1813.
- 85 O.I. Smith, Int. J. Mass Spectrom. Ion Processes, 54 (1983) 55.
- 86 J.B. Halpern, G.E. Miller, H. Okabe and W. Nottingham, J. Photochem. Photobiol., Ser. A, 42 (1988) 63.
- 87 J.B. Pedley, R.D. Naylor and S.P. Kirby, Thermochemical Data of Organic Compounds, 2nd edn., Chapman and Hall, 1986.
- 88 J.W. Huang and W.R.M. Graham, J. Chem. Phys., 93 (1990) 1583.
- 89 L.N. Shen, T.J. Doyle and W.R.M. Graham, J. Chem. Phys., 93 (1990) 1597.
- 90 E. Gey, S. Wiegratz and B. Ondruschka, Z. Phys. Chem. (Leipzig), 270 (1989) 1047.
- 91 D.C. Parent, J. Am. Chem. Soc., 112 (1990) 5966.